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Motivation

What? Multi-task Robotic Skill learning

Why is this important?
e One Robot, Many Tasks
e General-Purpose robots
e Reduced costs of automation - as one robot

can handle multiple tasks
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Main Problem

Technical challenges arising from the problem:

< Lots of Labelled Data and Segmented Expert Demonstration per task

% Designing Policies per task
% Manually Designing Reward per task

Reasons why prior approaches were lacking:
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Need lots of human effort




Key Insights

Things we need to overcome:
- Lack of labelled data
- Lack of demonstration

- hand-engineered reward and policy

We need the ability to reach any reachable goal state from any current state

How?

We consider “task” is no longer discrete, but continuous
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Tasks and Skills are not Discrete

“Grasp fast?” “Nudge + grasp?” “Nudge slow?”

Hard to Differentiate + Hard to draw Boundaries between Tasks
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Specific tasks we
want agent to learn

3&? Y ,ﬁ“"— o

Useful underlying
tasks not specified
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Play Data

The paper proposes to Self-Supervise on unlabelled “Play” data.

What? Non task-specific data collected from
tele-operation.

Why? Cheap, Fast (no scene resets,
segmentation, or task labeling), Rich and
General

2.5x
speedup
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https://docs.google.com/file/d/1Mpgqy6EdGyoJCMW7XKO440Jy7mTURHLa/preview

Problem Setting

We consider:

% For Play data: S, (goal state) from s_ (current state) = p(blsc,sg)
% Tele-operator samples : b ~ p(b|sc,sg)

% Play-Supervised Goal-Conditioned Behavioral Cloning (Play-GCBC)

> D = play dataset consists of (O,, a,)

> 0O={l,p}

> o®={E,, ..., E }(6,) encoder per sensory channel
> TrGCBC(at|st,sg) = Goal-conditioned policy

> actions 1

> action a,

> K-length sequence of observations
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Problem Setting

% Play-supervised Latent Motor Plans (Play-LMP)

>z = latent plan

> q(p(z|T) = Latent Plan Space

> V_, = Video Encoder

> OQOutput parameters of a distribution in latent plan space My O,
= TrLMP
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Related Work + Limitations

Paper uses the concept of Learning from Demonstrations (Off-Policy), no use of RL.
Reasons why prior approaches were lacking:

- Used Meta-learning, Reinforcement Learning, few-shot learning etc.
- Discrete set of tasks
- Need predefined Task Distribution

- Did not cover a large range of skills/task - exploration was low
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Proposed Approach
Key idea:

% Play-Supervised Goal-Conditioned Behavioral Cloning: A random window of
(observation, action) pairs retrieved from play depicts how the robot

progressed from a certain beginning state to a specific final state.

% Play-supervised Latent Motor Plans: learning representations of all the
different high-level plans ( p(b|sc,sg) )and condition a policy on a single

sampled plan.
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Proposed Approach

Algorithm 1 Training Play-GCBC Algorithm 2 Training Play-LMP
1: Input: Play data D : {(s1,a1),-- -, (s7,ar)} 1: Input: Play data D : {(s1,a1), "+, (s7,ar)}
2: Input: Window bounds: Kiow, Khigh 2: Randomly initialize model parameters = {6v,0cc,O0rLmp, 00}
3: Randomly initialize model parameters 6 = {0ccBc, 0} 3: while not done do:
4: while not done do: 4: Sample a sequence 7 = {(O¢:t4x,@t:t+x)} ~ D
5 Sample a sequence length & ~ U(Kiow, Khigh) 5: Map raw observations in 7 to encoded states: 7% = ®(7)
6: Sample a sequence 7 = {(O¢:t4r, Ot:t+x)} ~ D 6: Map encoded sequence to plan space: fig, 0p = Vene(T*)
7: Set encoded goal state: sy < P(Or+4) 7: Set current and goal state: s; < ®(O0;), sg ¢ P(Oryr)
8: Compute action 1055 8: Map encoded (current, goal) to plan space: jiy, 0y = CGenc(St, Sg)
g =1 Zk-{—n log(ﬂ’GCBC (at|<I>(Ot) sg)) 9: Compute KL' loss usmg.Eq. 2:
9: Update 6 by taking the gradient step to minimize 10:  Compute action loss using Eq. 3. L
i ——— 11: Update € by taking a gradient step to minimize Eq. 4.

2. Lx=KL(N(zlus, diag(03)) || N (z]uy, diag(03))

3 | ks
C L= — Z log(mrap(atlst, sg,2))

b=k
4.
Livp = Lrx+ BLkL
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Play-Supervised Goal-Conditioned Behavioral Cloning

1. Encoding perceptual inputs
s, < ®(0,)

2. Goal-conditioned policy

1 k+k
Leese = e Z lOQ(WGCBC(at|St,Sg))
t=k

3. Multimodality problem
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Play-supervised Latent Motor Plans

Multimodal policy learning problem -> Unimodal policy learning problem
1. Conditional sequence-to-sequence VAE (seq2seq CVAE)

a. Plan recognition : q(p(z|T) latent plan space
b. Plan proposal: pe(z|sc,sg)
c. Plan and goal-conditioned policy

enc

2. Plan encoding: Hy» O, = V__ (T%)

3. Plan prior matching , 5 : 2
L1 = KL(N(ZIM¢,dlag(0¢)) | N(zluw,dlag(%)))
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Play-supervised Latent Motor Plans

action likelihood single general policy

. ] [ action o ]
4 . P I an d eCOd N g . action KL divergence
decoder minimization
k+k Acurrent A goal A latent plan
1 - : ' (sampled)
b —==-- N
Lr=—-— E log(mrarp(arlst, sg,2)) >
K Gesls <«— latent plan

distribution space

plan plan
proposal recognition

current

5. Task-agnostic control at test time: UFTF EEREEE
“replan” by inferring and sampling new SA——
latent plans every k timesteps

K= 32

ﬁLMp = Lﬂ- 4= ﬂEKL

‘ play data
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Vision Network
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Architecture of Play-LMP
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Theory

e Unsupervised Representation Learning of Plans and Control from Play

e pdata(x) = the true underlying process generating x € X & D = dataset of i.i.d.
samples from pdata(x)

e Consider the joint distribution p(x, z) over (X, z), where x € X = points in the
observed data space and z € Z = points in a latent space

e Maximize the marginal log likelihood of the observations: log p, (x)

e Use Stochastic Gradient Variational Bayes (SGVB)

log () > —KL(gs(2|2) || pa(2)) + Eq, (z|=) [log pa(x|2)]
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Theory

For each observed window of state action pairs x of size kK sampled from play
dataset D:

1) Given an observed context ¢ « (s, sg)

2) From the conditional prior distribution z ~ p,(z|c) to draw a latent plan z. This
is similar to our idea of a "operator drawing a high-level plan in order to reach
a goal from a set of behaviors" b ~ p(b|sc,sg).

3) Draw x ~ py(x|c,z), the sequence of intervening states and actions between s
and 8, according to context and plan-conditioned distribution.

Note that this is equivalent to a goal and plan-conditioned policy Tre(at|sc,sg,z).
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Theory

Three modules to implement:

1. Recognition network q(p(z|x,c)

2. Conditional prior network p,(z|c)
3. Generation network p,(x|z,c)

Substitute back data variables obtained by self-supervised mining of windows from
play to define each of Play- LMP’s modules:

1. (i)« q,(zx.c)

2. pylzls,s,) < Pyzlc)

3. Tr(at|sc,sg,z) — py(X|z,c)
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Experimental Setup

(1) Can a single play-supervised policy be used for a wide range of user-specified visual
manipulation tasks even though it wasn't trained on task-specific data?

2) Are play-supervised models trained on cheap to collect play data (LfP) as good as
specialist models trained on expensive expert demonstrations for each task (LfD)?

3) Does Play-LMP improve performance over goal-conditioned behavioral cloning
(Play-GCBC), which doesn't do explicit latent plan inference, by separating latent plan
inference and plan decoding into separate problems?
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Experimental Setup

1

2
3.
4
S.
6.
7.
8.

CS391R: Robot Learning (Fall 2022) 21

Mujoco HAPTIX system to collect teleoperation demonstration data

Simulation: 8-DOF agent (arm and gripper)

18 visual manipulation tasks

3 hours total of playground data and 100 positive demonstrations each of 18 tasks
(1800 demonstrations total)

Train behavioral cloning policy, BC: 100 expert demonstrations per task

Train single multi-task behavioral cloning baseline, Multitask BC: same

Play-LMP and Play-GCBC : ~7 hours total Play Data

Metrics Used: Accuracy and Success




Results

We conduct :
- Pixel experiments

- State experiments 100 -

training data = 6]
Method labels |input | success % § N
BC labeled | pixels [66.5% + 12.1 -
Play-GCBC (ours) | unlabeled | pixels | 58.7% + 11.6 >
Play-LMP (ours) |unlabeled | pixels | 69.4% = 10.8 S 40
BC labeled | states 70.3% &
Multitask BC labeled | states 66.2% g 504l — Play-LMP (ours) i
Play-GCBC (ours) | unlabeled | states 77.9% ® — Play-GCBC (ours)
Play-LMP (ours) |unlabeled | states 85.5% — BC

0+ [ [ I I 1 I I 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Perturbation amount (meters)

Perturbation Theory: a small change in a system which can be as a result of a third object interacting with the system
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Results

rotate left S | grasp flat
close sliding | rotate right
grasp upright R grasp upright
sweep right [ —— close sliding

grasp flat e ———— pull out shelf
o pull out shelf S | X grasp lift
© sweep e o] sweep IE—
c  sweep left — & sliding  E————
o putinshelf I O close drawer I
v sliding [ — b sweep left ————
= knock p— 2 drawer E—
@ rotate right = ©  putinshelf m—
w push red I— w push blue

close drawer 8 rotate left
drawer sweep right o0
push green == push green
push blue ) push red
grasp lift knock
| 1 1 1 1 | 1 1 | J | | | 1 1
=10 =5 0 5 10 15 20 25 0 10 20 30 40 50 60
Improvement of Play-LMP over Play-GCBC Improvement of Play-LMP over BC
(absolute accuracy % points) (absolute accuracy % points)
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Results
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Minutes of unlabeled play data Minutes of expert demonstrations
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Robustness to Perturbations
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Perturbation Theory: a small change in a system which can be as a result of a third object interacting with the system
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Naturally Emerging Retrying Behaviour

goal state  starting state <

-

failure B retry #1 ——»

<«— failure B retry #2 ——» success
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Y

- ————

Single Play-LMP policy
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https://docs.google.com/file/d/13lvVVIUO38Dc5yavh3isueBJ6H2EJhrE/preview

Critiques

Play data is super cool !
Follow ups:

1. Intra-task and Inter-task generalization?

2. Simto Real Gap

3. Minutes of Unlabelled Time Data vs Expert Demonstration - Graph is not very
accurate

4. How can we ensure that the present state to objective did not include any
extra/unnecessary actions?

5. “Our model can in principle use any past experience for training, but the particular
data collection approach we used is based on human-provided play data”. Would
be interesting to see how well the model performs on existing datasets.

28
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Future Work

% Visual grounding
% Leveraging cross-modal retrieval on play data
«» Reducing human effort further - Augment data (Learning to Play by Imitating Humans)

% Learn object and action from play data for better learning
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Extended Readings

- Learning and generalization of motor skills by learning from demonstration

- Unsupervised control through non-parametric discriminative rewards

- Playful Interactions for Representation Learning

- PLATO: Predicting Latent Affordances Through Object-Centric Play

- Learning to Play by Imitating Humans

- GTI: Learning to Generalize Across Long-Horizon Tasks from Human Demonstrations

- BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning
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Summary

e One Robot, Many Tasks

But then we need many policies, lots of expert demonstrations, handcrafted
reward functions per task

We consider tasks/skills are not discrete, but continuous.

Use Play data

Learn using demonstration in a self supervised manner

Outperforms individual expert-trained policies on 18 user-specified visual
manipulation tasks

e Robust to perturbations and retrying-till-success behaviors
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